

 Cldr Collation

 v0.7.2

 Table of contents

 	Cldr Collation

 	LICENSE

 	Changelog

 	Modules

 	Cldr.Collation

 	Cldr.Collation.Insensitive

 	Cldr.Collation.Sensitive

Cldr Collation

A NIF-based Unicode collator based upon the Unicode library libicu4c. Builds upon the
erlang library erlang-ucol by Benoit Chesneau benoitc@e-engura.org and Nicolas Dufour nrdufour@gmail.com
This initial version uses only the "root" locale collator which is the CLDR DUCET collator.
Installation
ex_cldr_collation depends upon libicu to provide the underlying collator. There are two required components:
	At build time (compilation), the libicu development headers are are required. On MacOS these headers are provided as part of the library. For Linux systems the package typically called libicu-dev is required.

	At runtime the libicu library is required. On MacOS and Ubuntu this library is delivered as part of the OS. For Alpine and Debian the icu package needs to be installed.

Installation on MacOS
On MacOS, the relevant headers are included in ex_cldr_collation and no additional installation is required.
Installation on Linux
On Linux systems, libicu-dev, libicu and pkg-conf must be installed and well as basic development tools for the build process.
For Ubuntu
pkg-config and libicu are required for compiling the NIF
assumes libicu is already installed which is normal on Ubuntu
$ sudo apt-get install pkgconf libicu-dev

For Debian
pkg-config and icu-dev are required when compiling the NIF
libicu is required at runtime
Debian Bullseye
$ sudo apt install pkgconf libicu-dev libicu67
Debian Bookworm
$ sudo apt install pkgconf libicu-dev libicu72

For Alpine
pkg-config and icu-dev are required when compiling the NIF
icu is required at runtime
$ apk add pkgconf icu-dev icu

Then check that the libicu package dependencies
can be resolved
$ pkg-config --libs icu-uc icu-io
-licuio -licui18n -licuuc -licudata

Installing ex_cldr_collation
The package can then be installed by adding cldr_collation to your list of dependencies in mix.exs:
def deps do
 [
 {:ex_cldr_collation, "~> 0.7.0"}
]
end
Examples
 # Sorting using Cldr.Collator.sort/2
 iex> Cldr.Collation.sort(["á", "b", "A"], casing: :sensitive)
 ["A", "á", "b"]

 iex> Cldr.Collation.sort(["á", "b", "A"], casing: :insensitive)
 ["á", "A", "b"]

 # Comparing strings
 iex> Cldr.Collation.compare("a", "A", casing: :insensitive)
 :eq

 iex> Cldr.Collation.compare("a", "A", casing: :sensitive)
 :lt

 # Using Elixir 1.10 Enum.sort
 # Cldr.Collation.Sensitive, Cldr.Collation.Insensitive
 # comparise modules are provided

 iex> Enum.sort(["AAAA", "AAAa"], Cldr.Collation.Insensitive)
 ["AAAA", "AAAa"]

 iex> Enum.sort(["AAAA", "AAAa"], Cldr.Collation.Sensitive)
 ["AAAa", "AAAA"]

LICENSE

The Elixir code and additions to the NIF to handle
configurable collators is copyright
2019 (c) Kip Cole kipcole9@gmail.com
The original erlang NIF is copyright:
2011-2015 (c) BenoÃ®t Chesneau benoitc@e-engura.org
2011-2015 (c) Nicolas Dufour nrdufour@gmail.com
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Changelog

Ex_Cldr_Collation v0.7.2
This is the changelog for Cldr_collation v0.7.2 released on February 8th, 2023. For older changelogs please consult the release tag on GitHub
Bug fixes
	Makes the Makefile more resilient by exiting if pkg-config isn't installed and therefore ICU_LIBS is empty. Previously this would fail silently and an unclear runtime error would be reported.

	Improved the error message if the NIF can't be loaded. Thanks to @linusdm. Closes #8.

Ex_Cldr_Collation v0.7.1
This is the changelog for Cldr_collation v0.7.1 released on February 24th, 2023. For older changelogs please consult the release tag on GitHub
Bug fixes
	Add binary guards to Cldr.Collation.compare/3.

Ex_Cldr_Collation v0.7.0
This is the changelog for Cldr_collation v0.7.0 released on January 4th, 2022. For older changelogs please consult the release tag on GitHub
Bug fixes
	Fix the .so path for the NIF at load time, not compile time. Thanks to @sergiorjsd for the report. Closes #3.

	Fix buidling on ARM-based Mac models

Ex_Cldr_Collation v0.6.0
This is the changelog for Cldr_collation v0.6.0 released on July 3rd, 2021. For older changelogs please consult the release tag on GitHub
Bug fixes
	Load the nif from a path relative to :code.priv_dir/1.

Ex_Cldr_Collation v0.5.0
This is the changelog for Cldr_collation v0.5.0 released on June 23rd, 2021. For older changelogs please consult the release tag on GitHub
Bug fixes
	Correctly reference the ucol.so file when loading at startup

	Removes unrequired dependencies

Enhancements
	Adds Cldr.Collator.sort/2

	Adds documentation for Cldr.Collator.compare/3

Ex_Cldr_Collation v0.4.0
This is the changelog for Cldr_collation v0.4.0 released on April 9th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix compilation issues on OTP 23 and later. On these releases, liberl_interface.a doesn't exist and isn't required. Thanks to @zookzook for the report.

Ex_Cldr_Collation v0.3.0
This is the changelog for Cldr_collation v0.3.0 released on March 3rd, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Add :inets to :extra_applications for later versions of Elixir

	Fix application name in README.md. Thanks to @phlppn.

	Note the requirement for Elixir 1.10 or later in order to use the module-based comparators for Enum.sort/2.

Ex_Cldr_Collation v0.2.0
This is the changelog for Cldr_collation v0.2.0 released on Match 13th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds support for module-based comparators used by Enum.sort/2 on Elixir 1.10 and later. The comparitor modules are Cldr.Collator (which is case insensitive), Cldr.Collator.Sensitive (case sensitive comparison) and Cldr.Collator.Insensitive (case insensitive comparison).

Cldr.Collation

Implements the Unicode collation
rules based on the CLDR root collation
which in turn is based upon the Unicode DUCET
table.

 Anchor for this section

 Summary

 Types

 comparison()

 options()

 Functions

 compare(string_1, string_2, options \\ [casing: :insensitive])

 Compares two strings according to the
Unicode collation
rules with the CLDR root collation
which is based upon the Unicode DUCET
table.

 init()

 sort(list, options \\ [casing: :insensitive])

 Sorts a list of strings according to the
Unicode collation
rules with the CLDR root collation
which is based upon the Unicode DUCET
table.

 Anchor for this section

Types

 Link to this type

 comparison()

 View Source

 @type comparison() :: :lt | :eq | :gt

 Link to this type

 options()

 View Source

 @type options() :: [{:casing, :sensitive | :insensitive}]

 Anchor for this section

Functions

 Link to this function

 compare(string_1, string_2, options \\ [casing: :insensitive])

 View Source

 @spec compare(string_1 :: String.t(), string_2 :: String.t(), options()) ::
 comparison()

Compares two strings according to the
Unicode collation
rules with the CLDR root collation
which is based upon the Unicode DUCET
table.

 arguments

 Arguments

	string_1 is an a String.t/0

	string_2 is an a String.t/0

	options is a keyword list of options

 options

 Options

	:casing is either :sensitive or :insensitive
indicating if collation is to be case sensitive or not.
The default is :insensitive.

 returns

 Returns

	Either of :lt, :eq or :gt signifying if
string_1 is less than, equal to or greater than
string_2.

 examples

 Examples

iex> Cldr.Collation.compare "á", "A", casing: :sensitive
:gt

iex> Cldr.Collation.compare "á", "A", casing: :insensitive
:eq

 Link to this function

 init()

 View Source

 Link to this function

 sort(list, options \\ [casing: :insensitive])

 View Source

 @spec sort([String.t(), ...], options()) :: [String.t(), ...]

Sorts a list of strings according to the
Unicode collation
rules with the CLDR root collation
which is based upon the Unicode DUCET
table.
This collation does not aim to provide precisely correct ordering
for each language and script; tailoring would be required for correct
language handling in almost all cases.
The goal is instead to have all the other characters, those
that are not tailored, show up in a reasonable order.

 arguments

 Arguments

	strings is an enumerable of type t:String.t()

	options is a keyword list of options

 options

 Options

	casing is either :sensitive or :insensitive
indicating if collation is to be case sensitive or not.
The default is :insensitive

 returns

 Returns

	An ordered list of t:String.t()

 examples

 Examples

iex> Cldr.Collation.sort ["á", "b", "A"]
["á", "A", "b"]

iex> Cldr.Collation.sort ["á", "b", "A"], casing: :sensitive
["A", "á", "b"]

Cldr.Collation.Insensitive

Compare two strings using the UCA
in a case-insensitive manner

 Anchor for this section

 Summary

 Functions

 compare(a, b)

 Anchor for this section

Functions

 Link to this function

 compare(a, b)

 View Source

Cldr.Collation.Sensitive

Compare two strings using the UCA
in a case-sensitive manner

 Anchor for this section

 Summary

 Functions

 compare(a, b)

 Anchor for this section

Functions

 Link to this function

 compare(a, b)

 View Source

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

